Given that,
Voltage = 34 volt
Current = 3i mA
We need to calculate the complex number to represent the impedance
Using ohm's law
[tex]V=IR[/tex]
[tex]R=\dfrac{V}{I}[/tex]
Where, V = voltage
I = current
R = impedance
Put the value into the formula
[tex]R=\dfrac{34}{0.003i}[/tex]
[tex]R=\dfrac{34}{0+0.003i}\times\dfrac{0-0.003i}{0-0.003i}[/tex]
[tex]R=\dfrac{0.102i}{0.9\times10^{-5}}\ \Omega[/tex]
(b). Given that,
Voltage = 13 volts
Current = 2.4 mA
We need to calculate the complex number to represent the impedance
Using ohm's law
[tex]R=\dfrac{V}{I}[/tex]
Put the value into the formula
[tex]R=\dfrac{13}{0.00024i}[/tex]
[tex]R=\dfrac{13}{0.00024i}\times\dfrac{-0.00024i}{-0.00024i}[/tex]
[tex]R=\dfrac{0.00312i}{5.76\times10^{-8}}\ \Omega[/tex]
Hence, (a). The complex number to represent the impedance is [tex]\dfrac{0.102i}{0.9\times10^{-5}}\ \Omega[/tex]
(b). (a). The complex number to represent the impedance is [tex]\dfrac{0.00312i}{5.76\times10^{-8}}\ \Omega[/tex]