8. 1 Write a complex number to represent the impedance of each element. The voltage, V, is the real part, and the current, I, is the multiple of the imaginary unit i.

9. V = 34 volts: I = 3 milliamperes



10. V = 13 volts; I = 2.4 milliamperes​

Respuesta :

Given that,

Voltage = 34 volt

Current = 3i mA

We need to calculate the complex number to represent the impedance

Using ohm's law

[tex]V=IR[/tex]

[tex]R=\dfrac{V}{I}[/tex]

Where, V = voltage

I = current

R = impedance

Put the value into the formula

[tex]R=\dfrac{34}{0.003i}[/tex]

[tex]R=\dfrac{34}{0+0.003i}\times\dfrac{0-0.003i}{0-0.003i}[/tex]

[tex]R=\dfrac{0.102i}{0.9\times10^{-5}}\ \Omega[/tex]

(b). Given that,

Voltage = 13 volts

Current = 2.4 mA

We need to calculate the complex number to represent the impedance

Using ohm's law

[tex]R=\dfrac{V}{I}[/tex]

Put the value into the formula

[tex]R=\dfrac{13}{0.00024i}[/tex]

[tex]R=\dfrac{13}{0.00024i}\times\dfrac{-0.00024i}{-0.00024i}[/tex]

[tex]R=\dfrac{0.00312i}{5.76\times10^{-8}}\ \Omega[/tex]

Hence, (a). The complex number to represent the impedance is [tex]\dfrac{0.102i}{0.9\times10^{-5}}\ \Omega[/tex]

(b). (a). The complex number to represent the impedance is [tex]\dfrac{0.00312i}{5.76\times10^{-8}}\ \Omega[/tex]