MaeSong
contestada

(a) The perimeter of a rectangular field is 310 m.
If the length of the field is 84 m, what is its width?

(b) The area of a rectangular painting is 5185 cm.
If the width of the painting is 61 cm, what is its length?

Respuesta :

Answer:

a. [tex] \boxed{ \bold{ \boxed{ \sf{width \: of \: rectangular \: field \: = 71 \: meter}}}}[/tex]

b. [tex] \boxed{ \bold{ \boxed{ \sf{length \: of \: rectangular \: painting \: = 85 \: cm}}}}[/tex]

Step-by-step explanation:

a. Given,

Perimeter of rectangular field ( P ) = 310 m

Length of the field ( L ) = 84 m

Width of the field ( W ) = ?

Finding the width of the rectangular field

[tex] \boxed{ \sf{perimeter \: of \: rectangle = 2(l + w)}}[/tex]

plug the values

β‡’[tex] \sf{310 = 2(84 + w)}[/tex]

Distribute 2 through the parentheses

β‡’[tex] \sf{310 = 168 + 2w}[/tex]

Swap the sides of the equation

β‡’[tex] \sf{168 + 2w = 310}[/tex]

Move 168 to right hand side and change it's sign

β‡’[tex] \sf{2w = 310 - 168}[/tex]

Subtract 168 from 310

β‡’[tex] \sf{2w = 142}[/tex]

Divide both sides of the equation by 2

β‡’[tex] \sf{ \frac{2w}{2} = \frac{142}{2} }[/tex]

Calculate

β‡’[tex] \sf{w = 71 \: m}[/tex]

Width = 71 meters

------------------------------------------------------------

2. Given,

Area of rectangular painting ( A ) = 5185 cmΒ²

Width of the painting ( w ) = 61 cm

Length of the painting ( l ) = ?

Finding length of the painting

[tex] \boxed{ \sf{area \: of \: rectangle = l \times w}}[/tex]

plug the values

β‡’[tex] \sf{5185 = 61l}[/tex]

Swap the sides of the equation

β‡’[tex] \sf{61 \: l \: = 5185}[/tex]

Divide both sides of the equation by 61

β‡’[tex] \sf{ \frac{61 \: l}{61} = \frac{5185}{61} }[/tex]

Calculate

β‡’[tex] \sf{l = 85}[/tex] cm

Length = 85 cm

Hope I helped!

Best regards !!!