Find the limit. Please show all workings.

Answer:
[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}=2x-2[/tex]
Step-by-step explanation:
We want to find the limit:
[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}[/tex]
We can expand the numerator:
[tex]=\displaystyle \lim_{\Delta x \to 0} \frac{(x^2+2x\Delta x+\Delta x^2)+(-2x-2\Delta x)+1+(-x^2+2x-1)}{\Delta x}[/tex]
Simplify. Combine like terms:
[tex]\displaystyle \lim_{\Delta x\to 0} \frac{(x^2-x^2)+(-2x+2x)+(1-1)+(2x\Delta x+\Delta x^2-2\Delta x)}{y}[/tex]
The first three terms will cancel:
[tex]\displaystyle \lim_{\Delta x\to 0} \frac{2x\Delta x+\Delta x^2-2\Delta x}{\Delta x}[/tex]
Factor:
[tex]\displaystyle \lim_{\Delta x \to 0} \frac{\Delta x(2x+\Delta x-2)}{\Delta x}[/tex]
Cancel:
[tex]\displaystyle \lim_{\Delta x\to 0}2x+\Delta x-2[/tex]
Now, we can use direct substitution:
[tex]\displaystyle \begin{aligned} &\Rightarrow 2x+(0)-2\\ &=2x-2\end{aligned}[/tex]
Therefore:
[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}=2x-2[/tex]
Answer:
2x-2
Step-by-step explanation:
let d = delta x
lim as d goes to 0 ( ( x+d)^2 - 2(x+d) +1 - ( x^2 -2x+1))/d
Expand the term in side the parentheses
( ( x+d)^2 - 2(x+d) +1 - ( x^2 -2x+1))
x^2 +2dx +d^2 -2x-2d+1 - x^2 +2x -1
Combine like terms
2dx +d^2 -2d
Replace
lim as d goes to 0 ( 2dx +d^2 -2d)/d
Factor out a d
lim as d goes to 0 d( 2x +d -2)/d
Cancel the d in the numerator and denominator
lim as d goes to 0 ( 2x +d -2)
Take the limit of each term as d goes to zero
2x +0-2
2x-2