Respuesta :

Answer:

[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}=2x-2[/tex]

Step-by-step explanation:

We want to find the limit:

[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}[/tex]

We can expand the numerator:

[tex]=\displaystyle \lim_{\Delta x \to 0} \frac{(x^2+2x\Delta x+\Delta x^2)+(-2x-2\Delta x)+1+(-x^2+2x-1)}{\Delta x}[/tex]

Simplify. Combine like terms:

[tex]\displaystyle \lim_{\Delta x\to 0} \frac{(x^2-x^2)+(-2x+2x)+(1-1)+(2x\Delta x+\Delta x^2-2\Delta x)}{y}[/tex]

The first three terms will cancel:

[tex]\displaystyle \lim_{\Delta x\to 0} \frac{2x\Delta x+\Delta x^2-2\Delta x}{\Delta x}[/tex]

Factor:

[tex]\displaystyle \lim_{\Delta x \to 0} \frac{\Delta x(2x+\Delta x-2)}{\Delta x}[/tex]

Cancel:

[tex]\displaystyle \lim_{\Delta x\to 0}2x+\Delta x-2[/tex]

Now, we can use direct substitution:

[tex]\displaystyle \begin{aligned} &\Rightarrow 2x+(0)-2\\ &=2x-2\end{aligned}[/tex]

Therefore:

[tex]\displaystyle \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}=2x-2[/tex]

Answer:

2x-2

Step-by-step explanation:

let d = delta x

lim as d goes to 0  ( ( x+d)^2 - 2(x+d) +1 - ( x^2 -2x+1))/d

Expand the term in side the parentheses

( ( x+d)^2 - 2(x+d) +1 - ( x^2 -2x+1))

x^2 +2dx +d^2 -2x-2d+1 - x^2 +2x -1

Combine like terms

2dx +d^2 -2d

Replace

lim as d goes to 0  ( 2dx +d^2 -2d)/d

Factor out a d

lim as d goes to 0  d( 2x +d -2)/d

Cancel the d in the numerator and denominator

lim as d goes to 0  ( 2x +d -2)

Take the limit of each term as d goes to zero

2x +0-2

2x-2