Answer:
The difference quotient is 4.
Step-by-step explanation:
Given that:
[tex]g(x) = 4x - 1[/tex]
To find:
Difference quotient = ?
where [tex]h \neq 0[/tex]
Solution:
Formula for Difference quotient is given as:
[tex]\dfrac{g(x+h)-g(x)}{h}[/tex]
First of all, let us find out [tex]g(x+h)[/tex]
Replacing [tex]x[/tex] with [tex]x+h[/tex]
[tex]g(x+h) = 4(x+h)-1 \\\Rightarrow g(x+h) = 4x+4h-1[/tex]
Now,
[tex]g(x+h)-g(x) = (4x+4h-1 )-(4x-1)\\\Rightarrow g(x+h)-g(x) = 4x+4h-1 -4x+1\\\Rightarrow g(x+h)-g(x) = 4h[/tex]
Putting the above value in:
[tex]\dfrac{g(x+h)-g(x)}{h} = \dfrac{4h}{h}[/tex]
We are given that, [tex]h \neq 0[/tex]
[tex]\therefore \dfrac{4h}{h} = 4[/tex]
So, the difference quotient is 4.