Answer:
4 units ; counter clockwise ; 2.09 units
Step-by-step explanation:
Given the following :
x = 4 cos 3t
y = 4 sin 3t
The Radius (r) could be obtained using Pythagoras:
R = √(x^2 + y^2)
R = √[(4cos3t)^2 + (4sin3t)^2]
R = √[16cos^(2)3t + 16sin^(2)3t]
Recall : cos^2θ + sin^2θ = 1
Therefore, cos^(2)3t + sin^(2)3t= 1
Where, 3t stands for θ
R = √[16cos^(2)3t + 16sin^(2)3t]
Factorizing:
R = √16[cos^(2)3t + sin^(2)3t)]
R = √16[1]
R = √16
R = 4 units
Position at time t = 0
x = 4 cos 3(0)
x = 4 cos 0
x = 4 * 1 = 4 units
y = 4 sin 3t
y = 4 sin 3(0)
y = 4 * sin 0
y = 0
Position at t = 0;
(x, y) = (4, 0) = counterclockwise
Time taken to complete 1 complete revolution:
2Ï€/3 = 6.2831853 /3 = 2.0943951
= 2.09