In ΔLMN, \overline{LN}
LN
is extended through point N to point O, \text{m}\angle MNO = (5x-13)^{\circ}m∠MNO=(5x−13)

, \text{m}\angle NLM = (x-4)^{\circ}m∠NLM=(x−4)

, and \text{m}\angle LMN = (2x+19)^{\circ}m∠LMN=(2x+19)

. Find \text{m}\angle NLM.m∠NLM

Respuesta :

Answer:

[tex]\bold{\angle NLM = 10^\circ}[/tex]

Step-by-step explanation:

Given a ΔLMN.

Line LN is extended to point O.

such that:

[tex]\text{m}\angle MNO = (5x-13)^{\circ}[/tex]

[tex]\text{m}\angle NLM = (x-4)^{\circ}[/tex] and

[tex]\text{m}\angle LMN = (2x+19)^{\circ}[/tex]

To find:

[tex]\text{m}\angle NLM=?[/tex]

Solution:

Kindly refer to the attached image for the given triangle and dimensions of angles.

Let us recall the external angle property of a triangle:

The external angle of a triangle is equal to the sum of two opposite internal angles.

i.e.

[tex]\angle MNO = \angle NLM + \angle LMN\\\Rightarrow 5x-13 = x-4+2x+19\\\Rightarrow 5x-13 = 3x+15\\\Rightarrow 5x-3x = 13+15\\\Rightarrow 2x=28\\\Rightarrow x =14[/tex]

Putting the value of [tex]x[/tex] in [tex]\angle NLM[/tex].

[tex]\angle NLM=14-4 \\\Rightarrow \bold{\angle NLM = 10^\circ}[/tex]

Ver imagen isyllus

Answer:

The angle is 10 degrees.

Step-by-step explanation:

I got it correct on Delta Math.