b) The price of an electric fan is fixed 20% above its cost price. When it is sold allowing
18% discount, there is a loss of Rs 20. Calculate the marked price and the selling price
of the fan.

Respuesta :

Answer:

[tex] \boxed{ \boxed{ \sf {Marked \: price \: = Rs \: 1500}}}[/tex]

[tex] \boxed{ \bold{ \boxed{ \sf{Selling \: price = \: Rs \: 1230}}}}[/tex]

Step-by-step explanation:

Let Cost price ( C.P ) be x

Finding the Marked price and selling price

Marked price = [tex] \sf{x + 20\% \: of \: x}[/tex]

⇒[tex] \sf{x + \frac{20}{100} \times x}[/tex]

⇒[tex] \sf{ \frac{x \times 100 + 20x}{100} }[/tex]

⇒[tex] \sf{ \frac{120x}{100} }[/tex] ⇒ ( i )

Selling price = [tex] \sf{marked \: price \: - 18\% \: of \: marked \: price}[/tex]

⇒[tex] \sf{ \frac{120x}{100} - \frac{18}{100} \times \frac{120x}{100} }[/tex]

⇒[tex] \sf{ \frac{120x}{100} - \frac{54x}{250} }[/tex]

⇒[tex] \sf{ \frac{120x \times 5 - 54x \times 2}{500} }[/tex]

⇒[tex] \sf{ \frac{600x - 108x}{500} }[/tex]

⇒[tex] \sf{ \frac{492x}{500} }[/tex] ⇒ ( ii )

Finding the value of x ( Cost price )

[tex] \sf{loss = cost \: price - selling \: price}[/tex]

⇒[tex] \sf{20 = x - \frac{492x}{500} }[/tex]

⇒[tex] \sf{20 = \frac{x \times 500 - 492x}{500} }[/tex]

⇒[tex] \sf{20 = \frac{8x}{500} }[/tex]

⇒[tex] \sf{8x = 10000}[/tex]

⇒[tex] \sf{x = \frac{10000}{8} }[/tex]

⇒[tex] \sf{x = \: Rs \: 1250}[/tex]

Value of x ( cost price ) = Rs 1250

Now, Replacing the value of x in ( i ) in order to find the value of marked price

[tex] \sf{marked \: price = \frac{120x}{100} }[/tex]

⇒[tex] \sf{ \frac{120 \times 1250}{100} }[/tex]

⇒[tex] \sf{ \: Rs \: 1500}[/tex]

Replacing value of x in ( ii ) in order to find the value of selling price

[tex] \sf{selling \: price = \frac{492 \: x}{500} }[/tex]

⇒[tex] \sf{ \frac{615000}{500} }[/tex]

⇒[tex] \sf{ \: Rs \: 1230}[/tex]

Thus , Marked price of the fan = Rs 1500

Selling price of the fan = Rs 1230

Hope I helped!

Best regards!!