Respuesta :

Answer:

a = - 1

Step-by-step explanation:

Given the points are equidistant from A then AP = AQ

Calculate the distance using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = A(0, a) and (x₂, y₂ ) = P(3, - 3)

AP = [tex]\sqrt{3-0)^2+(-3-a)^2}[/tex] = [tex]\sqrt{3^2+(-3-a)^2}[/tex] = [tex]\sqrt{9+(-3-a)^2}[/tex]

Repeat with (x₁, y₁ ) = A(0, a) and (x₂, y₂ ) = Q(- 2, 2)

AQ = [tex]\sqrt{(-2-0)^2+(2-a)^2}[/tex] = [tex]\sqrt{(-2)^2+(2-a)^2}[/tex] = [tex]\sqrt{4+(2-a)^2}[/tex]

Equating AP and AQ

[tex]\sqrt{9+(-3-a)^2}[/tex] = [tex]\sqrt{4+(2-a)^2}[/tex] ( square both sides )

9 + (- 3 - a)² = 4 + (2 - a )² ← expand parenthesis on both sides

9 + 9 + 6a + a² = 4 + 4 - 4a + a² ( subtract a² - 4a from both sides )

18 + 10a = 8 ( subtract 18 from both sides )

10a = - 10 ( divide both sides by 10 )

a = - 1