Respuesta :
Answer:
[tex]\Large \boxed{h(g(f(x)))=-8x^2-40x-50}[/tex]
Step-by-step explanation:
[tex]f(x)=2x+5 \\\\ g(x)=x^2 \\\\h(x)=-2x[/tex]
[tex]h(g(f(x)))=-2((2x+5)^2)[/tex]
Expanding and solving for brackets.
[tex]h(g(f(x)))=-2(4x^2+20x+25)[/tex]
Distributing -2 to the terms in the brackets.
[tex]h(g(f(x)))=-8x^2-40x-50[/tex]
Answer:
-8x^2 - 40x - 50
Step-by-step explanation:
f(x) = 2x + 5
g(x) = x^2
h(x) = -2x
h(g(f(x))) =
First find g(f(x))
g(f(x)) = (2x+5) ^2 = 4x^2 + 10x + 10x +25
= 4x^2 + 20x + 25
The stick this in for g(f(x)
h(g(f(x))) = -2 (4x^2 + 20x + 25)
= -8x^2 - 40x - 50