Answer:
[tex](5.391 * 10^{-7}) + (2.5531 * 10^{-6}) = 3.0922 * 10^{-6}[/tex]
Explanation:
Given
[tex](5.391 * 10^{-7}) + (2.5531 * 10^{-6})[/tex]
Required
Solve
[tex](5.391 * 10^{-7}) + (2.5531 * 10^{-6})[/tex]
Remove the brackets
[tex]5.391 * 10^{-7} + 2.5531 * 10^{-6}[/tex]
Express [tex]10^{-7}[/tex] as [tex]10^{-1-6}[/tex]
[tex]5.391 * 10^{-1-6} + 2.5531 * 10^{-6}[/tex]
Apply law of indices
[tex]5.391 * 10^{-1} * 10^{-6} + 2.5531 * 10^{-6}[/tex]
[tex]0.5391 * 10^{-6} + 2.5531 * 10^{-6}[/tex]
Factorize:
[tex](0.5391 + 2.5531)10^{-6}[/tex]
[tex](3.0922)10^{-6}[/tex]
Remove bracket
[tex]3.0922 * 10^{-6}[/tex]
Hence:
[tex](5.391 * 10^{-7}) + (2.5531 * 10^{-6}) = 3.0922 * 10^{-6}[/tex]