Answer:
[tex] \boxed{ \bold{ \sf{x = 25°}}}[/tex]
[tex] \boxed{ \bold{ \sf{(x + 5) = 30°}}}[/tex]
[tex] \boxed{ \bold{ \sf{5x = 125°}}}[/tex]
Step-by-step explanation:
We know that sum of angle of triangle adds up to 180°
Finding the value of x
[tex] \sf{5x + x + x + 5 = 180°}[/tex]
Collect like terms
⇒[tex] \sf{7x + 5 = 180}[/tex]
Move 5 to right hand side and change its sign
⇒[tex] \sf{7x = 180 - 5}[/tex]
Subtract 5 from 180
⇒[tex] \sf{7x = 175}[/tex]
Divide both sides of the equation by 7
⇒[tex] \sf{ \frac{7x}{7} = \frac{175}{7} }[/tex]
Calculate
⇒[tex] \sf{x = 25°}[/tex]
Finding the value of ( x + 5 )°
[tex] \sf{x + 5}[/tex]
plug the value of x
⇒[tex] \sf{25 + 5}[/tex]
Add the numbers
⇒[tex] \sf{30°}[/tex]
Finding the value of 5x
[tex] \sf{5 \times 25}[/tex]
Multiply the numbers
⇒[tex] \sf{125°}[/tex]
Hope I helped!
Best regards!!