Respuesta :

Answer:

x = 2

AB = 15

BC = 15

AC = 30

Step-by-step explanation:

Given that B is the midpoint of AC, then AB = ½ of AC.

AB is given as 3(3x - 1),

AC = 5(2x + 2),

Therefore:

[tex] 3(3x - 1) = \frac{1}{2}*5(2x + 2) [/tex]

Solve for x

[tex] 9x - 3 = \frac{5}{2}(2x + 2) [/tex]

Multiply both sides by 2

[tex] 2(9x - 3) = \frac{5}{2}(2x + 2)*2 [/tex]

[tex] 18x - 6 = 5(2x + 2) [/tex]

[tex] 18x - 6 = 10x + 10 [/tex]

[tex] 18x - 10x = 6 + 10 [/tex]

[tex] 8x = 16 [/tex]

Divide both sides by 8

[tex] x = 2 [/tex]

[tex] AB = BC = 3(3x - 1) [/tex]

Plug in the value of x

[tex] AB = BC = 3(3(2) - 1) [/tex]

[tex] = 3(6 - 1) = 3(5) = 15 [/tex]

[tex] AC = 5(2x + 2) [/tex]

[tex] AC = 5(2(2) + 2) [/tex]

[tex] AC = 5(4 + 2) = 5(6) = 30 [/tex]