Respuesta :

Answer: -7.2

Step-by-step explanation:

The vertex form of quadratic equation :[tex]f (x) = m(x - a)^2 + b,[/tex] where (a,b) is the vertex.

Given: The quadratic function g(x) has a vertex at  (-5, 0).

Put (a,b)= (-5,0) for function g(x), we get

[tex]g(x)=m(x-(-5))^2+0\\\\\Rightarrow\ g(x)=m(x+5)^2[/tex]

Also, its  y-intercept is (0, -5).

Put x= 0 and g(x) =-5

[tex]-5=m(0+5)^2\\\\\Rightarrow\ -5=m(25)\\\\\Rightarrow\ m=\dfrac{-5}{25}\\\\\Rightarrow\ m=\dfrac{-1}{5}[/tex]

so, [tex]g(x)=-\dfrac{1}{5}(x+5)^2[/tex]

For g(1), put x=1

[tex]g(1)=-\dfrac{1}{5}(1+5)^2\\\\=-\dfrac{1}{5}(6)^2=-\dfrac{1}{5}(36)\\\\=-7.2[/tex]

Hence, g(1) is -7.2.

Otras preguntas