Can you help me with this assignment?

Answer:
AC =5
BC = 12
AB = 13
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
(n-1)^2 + (2n)^2 = (n+7)^2
FOILing
n^2-2n+1 + 4n^2 = n^2+14n+49
Combine like terms
5n^2-2n+1 = n^2+14n+49
Bring everything to the left
5n^2-2n+1 -n^2-14n-49 = n^2+14n+49-n^2-14n-49
4n^2 -16n -48 = 0
Divide by 4
n^2 -4n -12 = 0
Factor
( n-6)(n+2) =0
Using the zero product property
n-6 =0 n+2 =0
n=6 n=-2
Since the length cannot be negative
n=6
AC = n-1 = 6-1 =5
BC = 2n = 2*6 = 12
AB = n+7 = 6+7 = 13
Given :
Hypotenuse of right angle triangle = n + 7
Base = n - 1
Altitude = 2n
Using Pythagoras theorem :
→ ( n + 7 )² = (n - 1)² + (2n)²
→ n² + 14n + 49 = n² - 2n + 1 + 4n²
→ n² + 14n + 49 = 5n² - 2n + 1 = 0
→ n² + 14n + 49 - 5n² + 2n - 1 = 0
→ -4n² + 16n + 48 = 0
→ -4(n² - 4n - 12) = 0
→ n² - 6n + 2n - 12 = 0
→ n(n - 6) + 2(n - 6) = 0
→ (n - 6)(n + 2) = 0
As n ≠ Negative
So, n ≠ -2
So, n = 6
Hypotenuse = n + 7 = 6 + 7 = 13
Base = n - 1 = 6 - 1 = 5
Altitude = 2n = 2 × 6 = 12
So,
AB = 13
AC = 5
BC = 12