Answer:
[tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]
Step-by-step explanation:
Given
A = (4,-2)
B = (12,-10)
Ration = 1/4
Required
Determine the coordinate of point at 1 million buys
The formula to use is as follows:
[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]
Where m and n are the ratios
i.e.
[tex]\frac{m}{n} = \frac{1}{4}[/tex]
Convert to ratios
[tex]m:n = 1:4[/tex]
Considering A(4,-2) and B(12,10); we have
[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]
[tex](x,y) = (\frac{1 * 12 + 4 * 4}{4+1},\frac{1*10 + 4*-2}{4+1})[/tex]
[tex](x,y) = (\frac{12 + 16}{5},\frac{10 -8}{5})[/tex]
[tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]
Hence, the coordinate of the point is [tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]