The coordinates of points A and B are A(4, -2) and B(12, 10). What are the coordinates of the point that is 1/4
of the way from A to B?

Respuesta :

Answer:

[tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]

Step-by-step explanation:

Given

A = (4,-2)

B = (12,-10)

Ration = 1/4

Required

Determine the coordinate of point at 1 million buys

The formula to use is as follows:

[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Where m and n are the ratios

i.e.

[tex]\frac{m}{n} = \frac{1}{4}[/tex]

Convert to ratios

[tex]m:n = 1:4[/tex]

Considering A(4,-2) and B(12,10); we have

[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

[tex](x,y) = (\frac{1 * 12 + 4 * 4}{4+1},\frac{1*10 + 4*-2}{4+1})[/tex]

[tex](x,y) = (\frac{12 + 16}{5},\frac{10 -8}{5})[/tex]

[tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]

Hence, the coordinate of the point is [tex](x,y) = (\frac{28}{5},\frac{2}{5})[/tex]