Respuesta :

Answer:

(a) [tex]\vec F_{\parallel} = -\frac{102}{13}\,i-\frac{103}{13}\,j[/tex] , (b) [tex]\vec F_{\perp} = \frac{102}{13}\,i -\frac{68}{13}\,j[/tex], (c) [tex]W = -51[/tex]

Explanation:

The statement is incomplete:

The force on an object is [tex]\vec F = -17\,j[/tex]. For the vector [tex]\vec v = 2\,i +3\,j[/tex]. Find: (a) The component of [tex]\vec F[/tex] parallel to [tex]\vec v[/tex], (b) The component of [tex]\vec F[/tex] perpendicular to [tex]\vec v[/tex], and (c) The work [tex]W[/tex], done by force [tex]\vec F[/tex] through displacement [tex]\vec v[/tex].

(a) The component of [tex]\vec F[/tex] parallel to [tex]\vec v[/tex] is determined by the following expression:

[tex]\vec F_{\parallel} = (\vec F \bullet \hat {v} )\cdot \hat{v}[/tex]

Where [tex]\hat{v}[/tex] is the unit vector of [tex]\vec v[/tex], which is determined by the following expression:

[tex]\hat{v} = \frac{\vec v}{\|\vec v \|}[/tex]

Where [tex]\|\vec v\|[/tex] is the norm of [tex]\vec v[/tex], whose value can be found by Pythagorean Theorem.

Then, if [tex]\vec F = -17\,j[/tex] and [tex]\vec v = 2\,i +3\,j[/tex], then:

[tex]\|\vec v\| =\sqrt{2^{2}+3^{3}}[/tex]

[tex]\|\vec v\|=\sqrt{13}[/tex]

[tex]\hat{v} = \frac{1}{\sqrt{13}} \cdot(2\,i + 3\,j)[/tex]

[tex]\hat{v} = \frac{2}{\sqrt{13}}\,i+ \frac{3}{\sqrt{13}}\,j[/tex]

[tex]\vec F \bullet \hat{v} = (0)\cdot \left(\frac{2}{\sqrt{13}} \right)+(-17)\cdot \left(\frac{3}{\sqrt{13}} \right)[/tex]

[tex]\vec F \bullet \hat{v} = -\frac{51}{\sqrt{13}}[/tex]

[tex]\vec F_{\parallel} = \left(-\frac{51}{\sqrt{13}} \right)\cdot \left(\frac{2}{\sqrt{13}}\,i+\frac{3}{\sqrt{13}}\,j \right)[/tex]

[tex]\vec F_{\parallel} = -\frac{102}{13}\,i-\frac{153}{13}\,j[/tex]

(b) Parallel and perpendicular components are orthogonal to each other and the perpendicular component can be found by using the following vectorial subtraction:

[tex]\vec F_{\perp} = \vec F - \vec F_{\parallel}[/tex]

Given that [tex]\vec F = -17\,j[/tex] and [tex]\vec F_{\parallel} = -\frac{102}{13}\,i-\frac{153}{13}\,j[/tex], the component of [tex]\vec F[/tex] perpendicular to [tex]\vec v[/tex] is:

[tex]\vec F_{\perp} = -17\,j -\left(-\frac{102}{13}\,i-\frac{153}{13}\,j \right)[/tex]

[tex]\vec F_{\perp} = \frac{102}{13}\,i + \left(\frac{153}{13}-17 \right)\,j[/tex]

[tex]\vec F_{\perp} = \frac{102}{13}\,i -\frac{68}{13}\,j[/tex]

(c) The work done by  [tex]\vec F[/tex] through displacement [tex]\vec v[/tex] is:

[tex]W = \vec F \bullet \vec v[/tex]

[tex]W = (0)\cdot (2)+(-17)\cdot (3)[/tex]

[tex]W = -51[/tex]