Respuesta :

Answer:

The age of brothers are 4 years and 2 years respectively.

Step-by-step explanation:

We are given that the ages of two brothers have a ratio of 2 to 1. When 4 years have passed, the ratio of their ages will be 8 to 6.

Let the age of the first brother be 'x years' and the age of the second brother be 'y years'.

So, according to the question;

  • The first condition states that the ages of two brothers have a ratio of 2 to 1, that means;

                                      [tex]\frac{x}{y} =\frac{2}{1}[/tex]  

                                      [tex]x=2y[/tex]  -------------- [equation 1]

  • The second condition states that when 4 years have passed, the ratio of their ages will be 8 to 6, that means;

                                       [tex]\frac{x+4}{y+4}=\frac{8}{6}[/tex]

                               [tex]6({x+4})=8}(y+4)[/tex]

                               [tex]6x+24=8y+32[/tex]

                               [tex]6(2y)+24=8y+32[/tex]

                               [tex]12y-8y=32-24[/tex]

                                    [tex]4y=8[/tex]

                                     [tex]y=\frac{8}{4}[/tex] = 2 years

Putting the value of y in equation 1 we get;

                                     x = 2y

                                      x = [tex]2 \times 2[/tex] = 4 years

Hence, the age of brothers are 4 years and 2 years respectively.