Respuesta :
The distance in a coordinate geometry is calculated using: [tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]. Jerome and Eric have hiked 12.4 miles when they stopped to eat.
To do this, we make use of distance formula
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
From the figure, we have the following points:
[tex]A = (4,4)[/tex]
The other points between A and W in counterclockwise are:
[tex]B=(6,2)[/tex]
[tex]C = (8,2)[/tex]
[tex]D = (8,4)[/tex]
[tex]E = (10,6)[/tex]
[tex]W = (8,8)[/tex]
Distance AB is:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
[tex]AB = \sqrt{(4 - 6)^2 + (4 -2)^2} =\sqrt{8} =2.8[/tex]
Distance BC is
[tex]BC = \sqrt{(6 - 8)^2 + (2 -2)^2} =\sqrt{4} =2[/tex]
Distance CD is
[tex]CD = \sqrt{(8 - 8)^2 + (2 -4)^2} =\sqrt{4} =2[/tex]
Distance DE is :
[tex]DE = \sqrt{(8 - 10)^2 + (4 -6)^2} =\sqrt{8} =2.8[/tex]
Distance EW is:
[tex]EW = \sqrt{(10-8)^2 + (6 -8)^2} =\sqrt{8} =2.8[/tex]
So, distance AW is:
[tex]AW = AB + BC + CD + DE + EW[/tex]
[tex]AW = 2.8 + 2+ 2 + 2.8 +2.8[/tex]
[tex]AW = 12.4[/tex]
Read more about distance in coordinate geometry at:
https://brainly.com/question/3715220