Respuesta :
Answer:
∠3 = 87°
∠4 = 93°
Step-by-step explanation:
Since ∠3 and ∠4 are supplementary it means the the sum of their angles is equal to 180°
To find the angles add both ∠3 and ∠4 and equate it to 180° solve for x and substitute it into their various expressions
That's
∠3 + ∠4 = 180
5x + 22 + 7x + 2 = 180
12x + 24 = 180°
12x = 180 - 24
12x = 156
Divide both sides by 12
x = 13
So for ∠3
∠3 = 5x + 22
∠3 = 5(13) + 22
= 65 + 22
∠3 = 87°
For ∠4
∠4 = 7x + 2
∠4 = 7(13) + 2
= 91 + 2
∠4 = 93°
We have the answers as
∠3 = 87°
∠4 = 93°
Hope this helps you
Answer:
[tex] \boxed{ \bold{ \boxed{ \sf{ m \: ∠ \: 3 = 87 °}}}}[/tex]
[tex] \boxed{ \bold{\boxed{ \sf{m \: ∠4 = 93 °}}}}[/tex]
Step-by-step explanation:
We know that the sum of supplementary angle adds up to 180 °
So,
[tex] \sf{5x + 22 + 7x + 2 = 180°}[/tex]
Collect like terms
⇒[tex] \sf{12x + 22 + 2 = 180°}[/tex]
Add the numbers
⇒[tex] \sf{12x + 24 = 180°}[/tex]
Move 24 to right hand side and change it's sign
⇒[tex] \sf{12x = 180 - 24}[/tex]
Subtract 24 from 180
⇒[tex] \sf{12x = 156}[/tex]
Divide both sides of the equation by 12
⇒[tex] \sf{ \frac{12x}{12} = \frac{156}{12} }[/tex]
Calculate
⇒[tex] \sf{x = 13}[/tex]
Value of x = 13
Now, substituting / Replacing the value of x
[tex] \sf{m ∠ 3 = 5x + 22}[/tex]
⇒[tex] \sf{ m \: ∠ \: 3 = 5 \times 13 + 22}[/tex]
⇒[tex] \sf{m \: ∠ \: 3 = 65 + 22}[/tex]
⇒[tex] \sf{ \: m \: ∠ \: 3 = 87}[/tex]
Again,
[tex] \sf{ \: m \: ∠ \: 4 = 7x + 2 }[/tex]
⇒[tex] \sf{m \: ∠ \: 4 = 7 \times 13 + 2}[/tex]
⇒[tex] \sf{ \: m \: ∠ \: 4 \: = 91 + 2 }[/tex]
⇒[tex] \sf{m \: ∠ \: 4 = 93 }[/tex]
m ∠ 3 = 87
m ∠ 4 = 93
Hope I helped!
Best regards!!
