Respuesta :

Complete Question

A population has a mean of 25, a median of 24, and a mode of 26. The standard deviation is 5. The value of the 16th percentile is _______. The range for the middle 3 standard deviation is _______.

Answer:

The  value  of the 16th percentile  is  [tex]x = 20[/tex]

The range for the middle 3 standard deviation is  [tex]10 \to 40[/tex]

Step-by-step explanation:

From the question we are told that

     The  mean is  [tex]\mu  =  25[/tex]

     The  median is  [tex]m  =  24[/tex]

     The  mode is  [tex]n =  26[/tex]

     The  standard deviation is  [tex]\sigma  =  5[/tex]

Generally the 16th percentile is mathematically represented as

  [tex]P(x)= P(\frac{X  -  \mu }{ \sigma }   \le \frac{x- 25 }{5} ) = 0.16[/te

Generally  [tex]\frac{X -  \mu}{\sigma }  =  Z(The  \  standardized \  value \ of  \ X  )[/tex]

So

       [tex]P(x) =  P(Z \le \frac{ x -  25}{5} ) =  0.16[/tex]

Now from the normal distribution table  the z-score of  0.16 is  

      z =  -1

       [tex]P(x) =  P(Z \le \frac{ x -  25}{5} ) =  P(Z \le -1 )[/tex]

=>  [tex]\frac{x- 25}{5}  =  -1[/tex]

=>    [tex]x- 25  =  -5[/tex]

=>      [tex]x =  25-5[/tex]

=>       [tex]x = 20[/tex]

The range for the middle 3 standard deviation is mathematically represented

        [tex]\mu  -  3\sigma \to \mu + 3\sigma[/tex]

        [tex]25 -  3(5 ) \to 25 +  3(5 )[/tex]

         [tex]10 \to 40[/tex]