Respuesta :
Answer:
[tex]t=\dfrac{p}{(s_1-s_2)}[/tex]
Step-by-step explanation:
It is given that, p = s Subscript 1 Baseline t minus 2 Subscript 2 Baseline t. It can also written as :
[tex]p=s_1t-s_2t[/tex]
We need to solve the above equation for t.
Taking t common on RHS of the equation :
[tex]p=(s_1-s_2)t[/tex]
Now dividing both sides by [tex](s_1-s_2)[/tex], so,
[tex]\dfrac{p}{(s_1-s_2)}=\dfrac{(s_1-s_2)}{(s_1-s_2)}t\\\\t=\dfrac{p}{(s_1-s_2)}[/tex]
So, the equation for t is : [tex]t=\dfrac{p}{(s_1-s_2)}[/tex]
Answer:
Option C- t= p/s1-s2
___________________
If you have the same test I had the answers will be: (I got 100% proof is in the image below.)
1. C- t= p/s1-s2
2. B- y-mx=b
3. D- c= (10b-10)^2/25
4. C- L/pr=t
5. C- x=3 (y-2/3)
6. C- Using the multiplication property of equality to multiply both sides of the equation by 10
7. C- V^2-V^2/2s=a
8. D- a=2A/p
9. B- h=S/pie r^2
10. A- m=s-c/c
Step-by-step explanation:
Edge 2021. Happy to Help!
