Respuesta :

Answer:

[tex]t=\dfrac{p}{(s_1-s_2)}[/tex]

Step-by-step explanation:

It is given that, p = s Subscript 1 Baseline t minus 2 Subscript 2 Baseline t. It can also written as :

[tex]p=s_1t-s_2t[/tex]

We need to solve the above equation for t.

Taking t common on RHS of the equation :

[tex]p=(s_1-s_2)t[/tex]

Now dividing both sides by [tex](s_1-s_2)[/tex], so,

[tex]\dfrac{p}{(s_1-s_2)}=\dfrac{(s_1-s_2)}{(s_1-s_2)}t\\\\t=\dfrac{p}{(s_1-s_2)}[/tex]

So, the equation for t is : [tex]t=\dfrac{p}{(s_1-s_2)}[/tex]

Answer:

Option C- t= p/s1-s2

___________________

If you have the same test I had the answers will be: (I got 100% proof is in the image below.)

1. C-  t= p/s1-s2

2. B-  y-mx=b

3. D-  c= (10b-10)^2/25

4. C-  L/pr=t

5. C-  x=3 (y-2/3)

6. C-  Using the multiplication property of equality to multiply both sides of the equation by 10

7. C-  V^2-V^2/2s=a

8. D-  a=2A/p

9. B-  h=S/pie r^2

10. A-  m=s-c/c

Step-by-step explanation:

Edge 2021. Happy to Help!

Ver imagen joanneeleyyy