Respuesta :

Complete Question

The  complete question is shown on the first uploaded image

Answer:

The solution is  [tex]y^2 = \frac{1}{ 3 - 2 (1 + x^2 ) ^{\frac{1}{2} }}[/tex]    

Step-by-step explanation:

From the question we are told that

  The  function is  [tex]\left \{ {{y' =  xy^3 (1 + x^2)^{-\frac{1}{2} }} \atop {y(0) =  1}} \right.[/tex]

Generally the above  equation can be represented as

      [tex]\frac{dy}{dx}  =  xy^3  (1+ x^2)^{- \frac{1}{2} }[/tex]

      [tex]=>   \frac{dy}{y^3}  =  \frac{x}{ (1 + x^2)^{\frac{1}{2} }} dx[/tex]

     [tex]\int\limits { \frac{dy }{y^3} } \,    =  \int\limits {\frac{x}{(1 + x^2) ^{\frac{1}{2} }} } \, dx[/tex]

=>    [tex]- \frac{1}{2y^2}  =  (1 + x^2)^{\frac{1}{2} }+ C[/tex]

From the question we are told that at y(0) =  1

     [tex]- \frac{ 1}{2 * (1) } =  (1 + (0)^2)^{\frac{1}{2} } + C[/tex]

     [tex]C =  - \frac{3}{2}[/tex]

So

       [tex]- \frac{1}{2y^2}  =  (1 + x^2)^{- \frac{1}{2}}  - \frac{3}{2}[/tex]      

     [tex]\frac{1}{y^2}  =  3-2(1 + x^2)^{\frac{1}{2} }[/tex]

     [tex]y^2 = \frac{1}{ 3 - 2 (1 + x^2 ) ^{\frac{1}{2} }}[/tex]    

Ver imagen okpalawalter8