Respuesta :

Answer:

R_total = 14.57 Ω ,  V_C = 1.176 V

Explanation:

To solve this circuit we are going to find the equivalent resistance of each branch, let's remember

* Serial resistance  

         [tex]R_{eq}[/tex] = ∑ [tex]R_{i}[/tex]

* For resistance in parallel

        1 / R_{eq} = ∑ 1/R_{i}

We solve the two branches of the wheatstone bridge

Series resistors

Branch B

         R_B = Rb + R4

         R_B = 2 + 18

         R_B = 20 Ω

Branch C

         R_C5 = Rc + R5

         R_C5 = 3 + 12

         R_C5 = 15 Ω

Resistance in parallel R_B and R_C5

         1 / R_BC = 1 / R_B + 1 / R_C5

          1 / R_BC = 1/20 + 1/15 = 0.116666

          R_BC = 8.57 Ω

Now we have a single branch, we solve the series resistance

          R_total = R_A + R_BC

          R_total = 6 + 8.57

          R_total = 14.57 Ω

b) they ask us for the voltage in the resistance R_C

Let's remember that the voltage in a series circuit is the sum of the voltages

           10 = V_a + V_BC

           10 = i R_a + i R_BC = i (R_a + R_BC)

           i = 10 / (R_a + R_BC)

           i = 10 / (14.57)

           i = 0.6863 A

The current in the series circuit is constant

          V_BC = i R_BC

          V_BC = 0.6863 8.57

          V_BC = 5.8819 V

This voltage is divided in the bridge, for the two branches in parallel it is the same, but the resistance is different in each branch.

     Branch C

             V_BC = i R_C5

             i = V_BC / R_C5

             i = 5.8819 / 15

             i = 0.39213 A

In this branch we have two resistors in series, let's remember that the current in a series circuit is constant

             V_C = i R_C

              V_C = 0.39213 3

              V_C = 1.176 V

Otras preguntas