Answer:
Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].
Step-by-step explanation:
We have to find the equation of the line that passes through the points (8,0) and (-9,-9).
Let the two points be ([tex]x_1,y_1[/tex]) = (8, 0) and ([tex]x_2, y_2[/tex]) = (-9, -9).
Now, we will find the two-point slope using the above two points, i.e;
Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{-9-0}{-9-8}[/tex] = [tex]\frac{9}{17}[/tex]
Now, the equation of the line using one of the point, let's say ([tex]x_1,y_1[/tex]) = (8, 0) is given by;
[tex]y - y_1 = \text{Slope} \times (x - x_1)[/tex]
[tex]y - 0 =\frac{9}{17} \times (x - 8)[/tex]
[tex]y =\frac{9x}{17} - \frac{72}{17}[/tex]
Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].