Which pair of functions represents a decomposition of f(g(x)) = | 2(x + 1)^2 + (x + 1) | ?
A) f(x) = (x + 1)^2 and g(x) = | 2x + 1 |
B) f(x) = (x + 1) and g(x) = | 2x^2 + x |
C) f(x) = | 2x + 1 | and g(x) = (x + 1)^2
D) f(x) = | 2x^2 + x | and g(x) = (x + 1)

Respuesta :

Answer:

[tex]\Large \boxed{\mathrm{\bold{D.}} \ f(x) = | 2x^2 + x | \ \mathrm{and} \ g(x) = (x + 1)}[/tex]

Step-by-step explanation:

[tex]f(g(x)) = | 2(x + 1)^2 + (x + 1) |[/tex]

The first option :

[tex]f(x) = (x + 1)^2 \ \mathrm{and} \ g(x) = | 2x + 1 |[/tex]

[tex]f(g(x))=(|2x+1|+1)^2[/tex]

The second option :

[tex]f(x) = (x + 1) \ \mathrm{and} \ g(x) = | 2x^2 + x |[/tex]

[tex]f(g(x))=(|2x^2 +x|+1)[/tex]

The third option :

[tex]f(x) = | 2x + 1 | \ \mathrm{and} \ g(x) = (x + 1)^2[/tex]

[tex]f(g(x))=|2(x+1)^2 +1 |[/tex]

The fourth option :

[tex]f(x) = | 2x^2 + x | \ \mathrm{and} \ g(x) = (x + 1)[/tex]

[tex]f(g(x))= | 2(x + 1)^2 + (x + 1) |[/tex]

Answer:

D

Step-by-step explanation: