Respuesta :

Answer:

image below

Step-by-step explanation:

Ver imagen ariyarora

Transformation involves changing the position of a function.

The new function is [tex]\mathbf{f"(x) = -|x| - 12}[/tex]

The function is given as:

[tex]\mathbf{f(x) = |x|}[/tex]

When the function is shifted 12 units up,

The rule of transformation is:

[tex]\mathbf{(x,y) \to (x,y+12)}[/tex]

So, the function becomes

[tex]\mathbf{f'(x) = |x| + 12}[/tex]

When the function is reflected in the x-axis,

The rule of transformation is:

[tex]\mathbf{(x,y) \to (x,-y)}[/tex]

So, the function becomes

[tex]\mathbf{f"(x) = -(|x| + 12)}[/tex]

Expand

[tex]\mathbf{f"(x) = -|x| - 12}[/tex]

Hence, the new function is:

[tex]\mathbf{f"(x) = -|x| - 12}[/tex]

See attachment for the graphs of [tex]\mathbf{f(x) = |x|}[/tex] and [tex]\mathbf{f"(x) = -|x| - 12}[/tex]

Read more about transformations at:

https://brainly.com/question/13801312

Ver imagen MrRoyal