Answer:
(4,7), (6,13), and (5,10)
Step-by-step explanation:
To determine if an ordered pair is a solution, substitute the coordinates in and check to see if they are true:
(2,2)
[tex]y=3x-5\\(2)\stackrel{?}{=}3(2)-5\\2\stackrel{?}{=}6-5\\2\neq1[/tex]
Thus, (2,2) is not a solution.
(4,7)
[tex]y=3x-5\\(7)\stackrel{?}{=}3(4)-5\\7\stackrel{?}{=}12-5\\7\stackrel{\checkmark}{=}7[/tex]
Thus, (4,7) is a solution.
(6,13)
[tex]y=3x-5\\(13)\stackrel{?}{=}3(6)-5\\13\stackrel{?}{=}18-5\\13\stackrel{\checkmark}{=}13[/tex]
Thus, (6,13) is also a solution.
Lastly, (5,10)
[tex]y=3x-5\\10\stackrel{?}{=}3(5)-5\\10\stackrel{?}{=}15-5\\10\stackrel{\checkmark}{=}10[/tex]
Thus, (5,10) is also a solution.