Answer:
There are [tex]5.08\times 10^{22}\ \text{molecules of}\ C_6H_6[/tex]
Explanation:
In this problem, we need to find the number of molecules in [tex]8.437\times 10^{-2}[/tex] mol of [tex]C_6H_6[/tex].
The molar mass of [tex]C_6H_6[/tex] is [tex]6\times 12+1\times 6=78\ g/mol[/tex]
No of moles = mass/molar mass
We can find mass from above formula.
[tex]m=n\times M\\\\m=8.437\times 10^{-2}\ mol\times 78\ g/mol\\\\m=6.58\ g[/tex]
Also,
No of moles = no of molecules/Avogadro number
[tex]N=n\times N_A\\\\N=8.437\times 10^{-2}\times 6.023\times 10^{23}\\\\N=5.08\times 10^{22}\ \text{molecules}[/tex]
Hence, there are [tex]5.08\times 10^{22}\ \text{molecules of}\ C_6H_6[/tex]