Answer:
481.06
Step-by-step explanation:
Let's visualise this case in a right angled triangle.
Height = 300.6 m
Angle of depression = Angle of elevation = 32°
So,
[tex] \sin(32) = \frac{300.6}{hypotenuse} [/tex]
[tex] = > 0.5299192642 = \frac{300.6}{hypotenuse} [/tex]
[tex] = > hypotenuse = \frac{300.6} {0.5299192642 } [/tex]
[tex] = 567.2562224244 m[/tex]
Hypotenuse = Line of sight = 567.25 m
Also,
[tex] \cos(32) = \frac{base}{567.2562224244} [/tex]
[tex] = > 0.8480480962 = \frac{base}{567.2562224244} [/tex]
[tex] = > base = 0.8480480962 \times 567.2562224244 = 481.0605594599[/tex]
Hence Base = Distance between the spot of accident & the base of the tower = 481.06 m