Respuesta :

Answer:

[tex]( f - g)(x) = \frac{2x - \sqrt{x} + 14 }{3x}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{2x + 6}{3x} \\ \\ g(x) = \frac{ \sqrt{x} - 8}{3x} [/tex]

To find ( f - g)(x) , subtract g(x) from f(x)

That's

[tex]( f - g)(x) = \frac{2x + 6}{3x} - \frac{ \sqrt{x} - 8}{3x} [/tex]

Since they have a common denominator that's 3x we can subtract them directly

That's

[tex] \frac{2x + 6}{3x} - \frac{ \sqrt{x} - 8}{3x} = \frac{2x + 6 - ( \sqrt{x} - 8) }{3x} \\ = \frac{2x + 6 - \sqrt{x} + 8 }{3x} \\ = \frac{2x - \sqrt{x} + 6 + 8 }{3x} [/tex]

We have the final answer as

[tex]( f - g)(x) = \frac{2x - \sqrt{x} + 14 }{3x} [/tex]

Hope this helps you