add the vectors:
vector 1: 10m at 20 degrees N of E
vector 2:10m at 80 degrees N of E
x1= y1=
x2= y2=
x total= y total=
magnitude of resultant=
direction=

Respuesta :

Vector 1 has components

[tex]x_1=(10\,\mathrm m)\cos20^\circ\approx9.40\,\mathrm m[/tex]

[tex]y_1=(10\,\mathrm m)\sin20^\circ\approx3.42\,\mathrm m[/tex]

and vector 2 has

[tex]x_2=(10\,\mathrm m)\cos80^\circ\approx1.74\,\mathrm m[/tex]

[tex]y_2=(10\,\mathrm m)\sin80^\circ\approx9.85\,\mathrm m[/tex]

Add these vectors to get the resultant, which has components

[tex]x_{\rm total}\approx11.133\,\mathrm m[/tex]

[tex]y_{\rm total}\approx13.268\,\mathrm m[/tex]

The magnitude of the resultant is

[tex]\sqrt{{x_{\rm total}}^2+{y_{\rm total}}^2}\approx17.321\,\mathrm m[/tex]

with direction [tex]\theta[/tex] such that

[tex]\tan\theta=\dfrac{y_{\rm total}}{x_{\rm total}}\implies\theta\approx50^\circ[/tex]

or about 50º N of E.