Vector 1 has components
[tex]x_1=(10\,\mathrm m)\cos20^\circ\approx9.40\,\mathrm m[/tex]
[tex]y_1=(10\,\mathrm m)\sin20^\circ\approx3.42\,\mathrm m[/tex]
and vector 2 has
[tex]x_2=(10\,\mathrm m)\cos80^\circ\approx1.74\,\mathrm m[/tex]
[tex]y_2=(10\,\mathrm m)\sin80^\circ\approx9.85\,\mathrm m[/tex]
Add these vectors to get the resultant, which has components
[tex]x_{\rm total}\approx11.133\,\mathrm m[/tex]
[tex]y_{\rm total}\approx13.268\,\mathrm m[/tex]
The magnitude of the resultant is
[tex]\sqrt{{x_{\rm total}}^2+{y_{\rm total}}^2}\approx17.321\,\mathrm m[/tex]
with direction [tex]\theta[/tex] such that
[tex]\tan\theta=\dfrac{y_{\rm total}}{x_{\rm total}}\implies\theta\approx50^\circ[/tex]
or about 50º N of E.