Trouble finding arclength calc 2

y=3-x^2, 0<=x<=[tex]\sqrt{3}/2[/tex]

i determine that the derivative of the y function is -2x and using the arc length formula i get: (a = √3)/2, b=0)
[tex]\int\limits^a_b {\sqrt{1+4x^2} } \, dx[/tex]
now this is where I get stuck, are we suppose to use u sub somehow? If so, I get u=1+4x^2 and du=4x dx but how to I implement du when it has 4x? please show steps on how to do this

Respuesta :

Answer:

The arc-length is about 1.1953.

Step-by-step explanation:

We are given the equation:

[tex]y=3-x^2[/tex]

And we want to find the length of its arc from:

[tex]0\leq x\leq \sqrt3/2[/tex]

Recall that arc-length is given by the formula:

[tex]\displaystyle S = \int_a^b \sqrt{1+ \left(\frac{dy}{dx}\right)^2}\, dx[/tex]

By differentiating and substituting into the arc-length formula, we will acquire:

[tex]\displaystyle S=\int\limits^{\sqrt{3}/2}_0 {\sqrt{1+4x^2} \, dx[/tex]

To evaluate, we can use trigonometric substitution. Note that:

[tex]\displaystyle S=\int\limits^\sqrt3/2}_0 {\sqrt{(1)^2+(2x)^2} \, dx[/tex]

Since this is in the form a² + u², we will make the substitution u = atan(θ).

In this case, a = 1 and u = 2x. Thus:

[tex]\displaystyle 2x = \tan \theta[/tex]

Differentiating both sides with respect to x:

[tex]\displaystyle 2\, dx = \sec^2 \theta \, d\theta[/tex]

So:

[tex]\displaystyle dx = \frac{1}{2}\sec^2 \theta \, d\theta[/tex]

Additionally, we must rewrite our bounds. Hence:

[tex]\displaystyle 2(0) = \tan \theta \Rightarrow \theta = 0[/tex]

And:

[tex]\displaystyle 2\left(\frac{\sqrt{3}}{2}\right) = \tan\theta \Rightarrow \theta = \frac{\pi}{3}[/tex]

Thus:

[tex]\displaystyle S = \int_{0}^{\pi /3}\sqrt{1+(\tan\theta)^2}\cdot \frac{1}{2}\sec^2\theta\, d\theta[/tex]

Simplify:

[tex]\displaystyle S = \frac{1}{2}\int_{0}^{\pi /3}\sqrt{1+\tan^2\theta} \cdot \sec^2\theta d\theta[/tex]

Using trigonometric identities:

[tex]\displaystyle S = \frac{1}{2}\int_{0}^{\pi /3}\sqrt{(\sec^2\theta)} \cdot \sec^2\theta d\theta[/tex]

Simplify:

[tex]\displaystyle S = \frac{1}{2}\int_{0}^{\pi /3} \sec^3\theta \, d\theta[/tex]

We can apply the reduction formula:

[tex]\displaystyle \int \sec^nu \, du = \frac{\sec^{n-2}u\tan u}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2} u \, du[/tex]

Hence:

[tex]\displaystyle S = \frac{1}{2}\left(\frac{\sec \theta \tan\theta}{2}\Big|_{0}^{\pi /3} + \frac{1}{2} \int_0^{\pi /3} \sec \theta\, d\theta\right)[/tex]

This is a common integral:

[tex]\displaystyle S = \frac{1}{2}\left(\frac{\sec \theta \tan\theta}{2}+ \frac{1}{2} \left(\ln \left(\sec \theta + \tan\theta\right)\right)\Bigg|_{0}^{\pi /3} \right)[/tex]

Evaluate. Hence:

[tex]\displaystyle \begin{aligned} S = \frac{1}{2}\left[\left(\frac{\sec\dfrac{\pi}{3}\tan\dfrac{\pi}{3}}{2}+\frac{1}{2}\ln\left(\sec\dfrac{\pi}{3}+\tan\dfrac{\pi}{3}\right)\right) \\ - \left(\frac{\sec0\tan0}{2}+\frac{1}{2}\ln\left(\sec 0 +\tan 0\right)\right)\right] \end{aligned}[/tex]

Evaluate:

[tex]\displaystyle \begin{aligned} S &=\frac{1}{2} \left[ \left(\frac{(2)\left(\sqrt{3}\right)}{2} + \frac{1}{2}\ln \left(2 + \sqrt{3}\right) \right)-\left(\frac{(1)(0)}{2} + \frac{1}{2}\ln \left(1+0\right) \right) \right] \\ \\&= \frac{1}{2}\left(\sqrt{3} + \frac{1}{2} \ln \left(2+\sqrt{3}\right)\right) \\ \\ &\approx 1.1953 \end{aligned}[/tex]

Thus, the length of the arc is about 1.1953 units.