How do you find the square root of a negative number? Explain the process

02

and provide two examples.

In your own words, explain the process for adding and subtracting complex

1-

numbers.

= In your own words, explain the process of multiplying complex numbers.

Respuesta :

Answer:

A. [tex]\sqrt{-64}[/tex] = 8i

B. 8i + 5i = 13i

C.  8i - 5i = 3i

D. 8i x 5i = -40

Step-by-step explanation:

A. The square root of any negative number would lead to a complex number. Complex numbers are number which consist a complex part denoted by i.

-1 = [tex]i^{2}[/tex]

[tex]\sqrt{-1}[/tex] = [tex]\sqrt{i^{2} }[/tex] = i

Example: 1. What is the square root of -64?

square root of -64 = [tex]\sqrt{-64}[/tex]

                         = [tex]\sqrt{-1 *64}[/tex]

                         = [tex]\sqrt{-1}[/tex] x [tex]\sqrt{64}[/tex]

                         = i x 8

                         = 8i

[tex]\sqrt{-64}[/tex] = 8i

2. find the square root of -25.

[tex]\sqrt{-25}[/tex] = [tex]\sqrt{-1*25}[/tex]

          = 5i

B. To add two complex numbers, they are considered as algebraic expressions.

Example, the sum of 8i and 5i can be determined as;

                 8i + 5i = 13i

C. To add two complex numbers, they are considered as algebraic expressions.

Example, the subtraction of 8i and 5i can be determined as;

                 8i - 5i = 3i

D. To multiply two complex numbers, the complex part is considered.

Example, determine the product of 8i and 5i.

8i x 5i = 8 x 5 x i x i

          = 40[tex]i^{2}[/tex]

         = -40                (∵      [tex]i^{2}[/tex] = -1)

8i x 5i = -40