Find the coordinates of the point

3

10

of the way from A to B.

AY

10-

B(10,7)

6-

4-

2

X

-6 -4

-2

-22

2

4

6

8

10 12 14

-4-

НА

(-4,-6)

-8-

Respuesta :

Answer:

[tex](x,y) = (\frac{-10}{13},3)[/tex]

Step-by-step explanation:

Question is not well formatted; However, the given parameters are

Given

Point = 3/10

A = (-4,-6)

B = (10,7)

Required

Determine the coordinates of the point

Represent the point as ratio

[tex]Point = 3:10[/tex]

The coordinates can be solved using

[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Where

[tex]m:n = 3:10[/tex]

[tex](x_1,y_1) = (-4,-6)[/tex]

[tex](x_2,y_2) = (10,7)[/tex]

Substitute these values in the above formula:

[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

[tex](x,y) = (\frac{3 * 10 + 10 * -4}{3+10},\frac{3 * 7 + 10 * -6}{10+3})[/tex]

[tex](x,y) = (\frac{30 -40}{13},\frac{21 -60}{13})[/tex]

[tex](x,y) = (\frac{-10}{13},\frac{-39}{13})[/tex]

[tex](x,y) = (\frac{-10}{13},3)[/tex]

Hence;

The coordinates of the point is [tex](x,y) = (\frac{-10}{13},3)[/tex]