Answer:
[tex](x,y) = (\frac{-10}{13},3)[/tex]
Step-by-step explanation:
Question is not well formatted; However, the given parameters are
Given
Point = 3/10
A = (-4,-6)
B = (10,7)
Required
Determine the coordinates of the point
Represent the point as ratio
[tex]Point = 3:10[/tex]
The coordinates can be solved using
[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]
Where
[tex]m:n = 3:10[/tex]
[tex](x_1,y_1) = (-4,-6)[/tex]
[tex](x_2,y_2) = (10,7)[/tex]
Substitute these values in the above formula:
[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]
[tex](x,y) = (\frac{3 * 10 + 10 * -4}{3+10},\frac{3 * 7 + 10 * -6}{10+3})[/tex]
[tex](x,y) = (\frac{30 -40}{13},\frac{21 -60}{13})[/tex]
[tex](x,y) = (\frac{-10}{13},\frac{-39}{13})[/tex]
[tex](x,y) = (\frac{-10}{13},3)[/tex]
Hence;
The coordinates of the point is [tex](x,y) = (\frac{-10}{13},3)[/tex]