Respuesta :
Answer:
a)9/36
b)4x6/36
c)6
d)6/36
e)9/36 +4x6/36 -6/36=0.75
f)27
Step-by-step explanation:
The appropriate answer of each of the parts is "[tex]\frac{1}{4}[/tex]", "[tex]\frac{4}{9}[/tex]", "[tex]4 \ cards[/tex]", "[tex]\frac{1}{9}[/tex]", "[tex]\frac{21}{36}[/tex]" and "[tex]21 \ cards[/tex]". A complete solution is provided below.
Given:
4 colors = Red, Yellow, Green, Blue
Numbered from 1 to 9
Total number of cards = [tex]4\times 9[/tex]
= [tex]36[/tex]
(a)
The probability of even E will be:
→ [tex]P(E) = \frac{No. \ of \ favorable \ outcomes}{Total \ no. \ of \ outcomes}[/tex]
[tex]=\frac{9}{36}[/tex]
[tex]=\frac{1}{4}[/tex]
(b)
Cards between 1 to 4 = [tex]4\times 4[/tex]
= [tex]16[/tex]
→ [tex]P(F) = \frac{16}{36}[/tex]
[tex]=\frac{4}{9}[/tex]
(c)
There are 1 red, 2 red, 3 red, 4 red, So that the cards satisfy both E and F are:
→ Intersection = [tex]4 \ cards[/tex]
(d)
→ [tex]P(E \ and \ F) = \frac{4}{36}[/tex]
[tex]= \frac{1}{9}[/tex]
(e)
The probability of event G will be:
→ [tex]G = P(E \ or \ F)[/tex]
[tex]= P(E)+P(F) - P(E \ and \ F)[/tex]
[tex]=\frac{1}{4}+\frac{4}{9} -\frac{1}{9}[/tex]
[tex]=\frac{9+16-4}{36}[/tex]
[tex]=\frac{21}{36}[/tex]
(f)
→ Number of cards in the event G will be:
= [tex]9 \ red+4 \ green +4 \ yellow+4 \ blue[/tex]
= [tex]21 \ cards[/tex]
Thus the above answers are correct.
Learn more about Probability here:
https://brainly.com/question/11234923
