beauzurn
contestada


PLEASE HELP!!


The volume of a sample of gas changes from 1.35L to 1.95L as the pressure remains constant. The gas has a starting temperature of 283 K? What would be the new temperature of the gas in oC?

Answer = oC



If a gas has a pressure of 1.34 atm and a volume of 267mL, what is the new pressure in atm if the volume is increased to 1.67 Liters while the temperature is held constant?

Answer = atm

Respuesta :

Answer:

1. 136 °C.

2. 0.21 atm.

Explanation:

1. Determination of the new temperature in °C.

Initial volume (V1) = 1.35L

Final volume (V2) = 1.95L

Initial temperature (T1) = 283 K

Final temperature (T2) =...?

Using the Charles' law equation, the new temperature of the gas can be obtained as follow:

V1 /T1 = V2 /T2

1.35/283 = 1.95/T2

Cross multiply

1.35 × T2 = 283 × 1.95

1.35 × T2 = 551.85

Divide both side by 1.35

T2 = 551.85/1.35

T2 = 408.8 ≈ 409 K

Finally, we shall convert 409 K to °C. This can be obtained as follow:

T (°C) = T(K) – 273

T(K) = 409 K

T (°C) = 409 – 273

T (°C) = 136 °C

Therefore, the new temperature of the gas is 136 °C.

2. Determination of the new pressure.

Initial pressure (P1) = 1.34 atm

Initial volume (V1) = 267 mL

Final volume (V2) = 1.67 L

Final pressure (P2) =.?

Next, we shall convert 1.67 L to millilitres (mL). This can be obtained as follow:

1 L = 1000 mL

Therefore,

1.67 L = 1.67 L × 1000 mL / 1 L

1.67 L = 1670 mL

Therefore, 1.67 L is equivalent to 1670 mL.

Finally, we shall determine the new pressure of the gas as follow:

Initial pressure (P1) = 1.34 atm

Initial volume (V1) = 267 mL

Final volume (V2) = 1670 mL

Final pressure (P2) =.?

P1V1 = P2V2

1.34 × 267 = P2 × 1670

357.78 = P2 × 1670

Divide both side by 1670.

P2 = 357.78 / 1670

P2 = 0.21 atm.

Therefore, the new pressure of the gas is 0.21 atm.