Plz help. Attachment below

Answer:
The value of k is 1.
Step-by-step explanation:
You have to apply Indices Law :
[tex] {a}^{m} \times {a}^{n} = {a}^{m + n} [/tex]
For this question :
[tex] {( \frac{4}{5} )}^{2} \times {( \frac{4}{5} )}^{5} = {( \frac{4}{5} )}^{6k + 1} [/tex]
[tex] {( \frac{4}{5}) }^{2 + 5} = {( \frac{4}{5}) }^{6k + 1} [/tex]
[tex]by \: comparison[/tex]
[tex]2 + 5 = 6k + 1[/tex]
[tex]7 = 6k + 1[/tex]
[tex]7 - 1 = 6k[/tex]
[tex]6k = 6[/tex]
[tex]k = 6 \div 6[/tex]
[tex]k = 1[/tex]
Answer:
k = 1
Step-by-step explanation:
[tex]a^{m} * a^{n} = a^{m+n}\\\\(\frac{4}{5})^{2}*(\frac{4}{5})^{5}=(\frac{4}{5})^{6k+1}\\\\\\(\frac{4}{5})^{2+5}=(\frac{4}{5})^{6k+1}\\\\(\frac{4}{5})^{7}=(\frac{4}{5})^{6k+1}[/tex]
Compare the powers,
6k + 1 = 7 {subtract 1 from both sides}
6k = 7 - 1
6k = 6 {Divide both sides by 6}
6k/6= 6/6
k = 1