Respuesta :

Answer:

A = 1, B = 7, C = 4

Step-by-step explanation:

[tex] 2x^2 +5x-C= 2(x - 2)(Ax+1)+Bx\\

2x^2 +5x-C= (2x - 4)(Ax+1)+Bx\\

2x^2 +5x-C= 2Ax^2+2x - 4Ax-4+Bx\\

2x^2 +5x-C= 2Ax^2 + (2-4A+B)x-4\\[/tex]

Equating like terms on both sides:

[tex] 2x^2 = 2Ax^2\\

\frac{2x^2}{2x^2} = A\\

\huge \purple {\boxed {\implies A = 1}} \\\\

5x = (2-4A+B)x\\

\frac{5x}{x} =2-4A + B\\

2-4A + B = 5....(1)\\

[Plug \: A = 1\: in\: equation \: (1)] \\

2-4\times 1 + B = 5\\

2-4 +B = 5\\

-2 + B = 5\\

B=5+2\\

\huge \purple {\boxed {\implies B = 7}} \\\\

-C = - 4\\

\huge \purple {\boxed {\implies C = 4}}[/tex]