Respuesta :

Answer:

x = 11°

4x = 44°

Step-by-step explanation:

Line BC || Line EF... (given)

BF is transversal.

[tex] \angle BFG + \angle BFE = 180\degree\\.. (straight \: line \: \angle 's) \\

+ \angle BFE = 180\degree\\

\angle BFE = 180\degree-147\degree \\

\angle BFE = 33\degree\\[/tex]

[tex] \angle BED [/tex] is exterior angle of [tex] \angle EBF [/tex]

Hence, by remote interior angle theorem of triangle, we have:

[tex] m\angle BED = m\angle EBF + \angle BFE \\

4x = x + 33\degree \\

4x - x = 33\degree \\

3x = 33\degree \\

x = \frac{33}{3}\\

\huge \purple {\boxed {x = 11\degree}} \\

4x = 4\times 11\degree \\

\huge \orange{\boxed {4x = 44\degree}}

[/tex]