Respuesta :

Answer:

 A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

         A2 - AB + BA - B2 =

         A2 - AB + AB - B2 =

         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  4  is the square of  2 

Check :  a2  is the square of  a1 

Check :  b2  is the square of  b1 

Factorization is :   (2a + b)  •  (2a - b)