Answer:
The answer is below
Explanation:
The load impedance = [tex]z_L=(30-j50)\Omega\\[/tex]
Characteristic impedance (Zo) = 50 Ω
Wavelength (λ) = 8 cm = 0.08 m
a) The reflection coefficient at the load is given as:
[tex]\Gamma=\frac{Z_L-Z_o}{Z_L+Z_o}=\frac{30-j50-50}{30-j50+50}=0.57\angle -79.8^o[/tex]
b) The standing wave ratio (VSWR) is given as:
[tex]VSWR=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.57}{1-0.57} =3.65[/tex]
c) The position of the voltage maximum nearest the load is given asL
[tex]d_{max}=\frac{\theta_\Gamma*\lambda}{4\pi}+\frac{n\lambda}{2}=\frac{-79.8*0.08\ m}{4\pi}*\frac{\pi}{180}+\frac{n*0.08}{2}=-0.00887+0.04=0.0311\ m\\\\d_{max}=3.11\ cm[/tex]
d) The current maximum occurs at the voltage minimum. Hence:
[tex]d_{min}=d_{max}-\frac{\lambda}{4}=3.11\ cm-\frac{8\ cm}{4}=1.11\ cm[/tex]