Respuesta :
Answer:
[tex]P(Republican) = 0.2857[/tex]
[tex]P(Better) = 0.1091[/tex]
[tex]P(better | Republican) = 0.2043[/tex]
[tex]P(Republican | better) = 0.5352[/tex]
[tex]P(Republican\ n\ Better) = 0.0584[/tex]
Step-by-step explanation:
Given
---------------------better same worse
Republican ------38 -----104 --- 44
Democrat --------12 -------87 --- 137
None --------------21 --------90 ----118
[tex]Total = 651[/tex]
Solving (a): P(Republican)
Here, we consider the "republican" row only;
[tex]n(Republican) = 38 + 104 + 44[/tex]
[tex]n(Republican) = 186[/tex]
[tex]P(Republican) = \frac{n(Republican)}{Total}[/tex]
[tex]P(Republican) = \frac{186}{651}[/tex]
[tex]P(Republican) = 0.2857[/tex]
Solving (b): P(Better)
Here, we consider the "better" column only
[tex]n(Better) = 38 + 12+21[/tex]
[tex]n(Better) = 71[/tex]
[tex]P(Better) = \frac{n(Better)}{Total}[/tex]
[tex]P(Better) = \frac{71}{651}[/tex]
[tex]P(Better) = 0.1091[/tex]
Solving (c): P(better | Republican)
This is calculated as:
[tex]P(better | Republican) = \frac{P(better\ n\ Republican)}{P(Republican)}[/tex]
For, P(better n Republican), we consider the cell where "Better" and "Republican" intersects;
i.e. [tex]n(Better\ n\ Republican) = 38[/tex]
[tex]P(Better\ n\ Republican) = \frac{38}{651}[/tex]
So:
[tex]P(better | Republican) = \frac{P(better\ n\ Republican)}{P(Republican)}[/tex]
[tex]P(better | Republican) = \frac{38}{651}/\frac{186}{651}[/tex]
[tex]P(better | Republican) = \frac{38}{651} * \frac{651}{186}[/tex]
[tex]P(better | Republican) = \frac{38}{186}[/tex]
[tex]P(better | Republican) = 0.2043[/tex]
Solving (d): P(Republican | better)
This is calculated as:
[tex]P(Republican | better) = \frac{P(Republican\ n\ better)}{P(better)}[/tex]
[tex]P(Republican\ n\ Better) =P(Better\ n\ Republican) = \frac{38}{651}[/tex]
So:
[tex]P(Republican | better) = \frac{P(Republican\ n\ better)}{P(better)}[/tex]
[tex]P(Republican | better) = \frac{38}{651}/\frac{71}{651}[/tex]
[tex]P(Republican | better) = \frac{38}{651} * \frac{651}{71}[/tex]
[tex]P(Republican | better) = \frac{38}{71}[/tex]
[tex]P(Republican | better) = 0.5352[/tex]
Solving (e): P(Republican and better)
[tex]P(Republican\ n\ Better) =P(Better\ n\ Republican) = \frac{38}{651}[/tex]
[tex]P(Republican\ n\ Better) = 0.0584[/tex]