Write an expression to represent the perimeter of the triangle below in simplest form

Answer:
Perimeter of the given triangle = [tex]\frac{7x+38}{(x+8)(x+5)}[/tex] units
Step-by-step explanation:
Perimeter of a polygon = Sum of the measures of all sides of the polygon
From the picture attached,
Perimeter of the given isosceles triangle = Measures of two equal sides + remaining side
P = [tex]2(\frac{3}{x+8})+\frac{x}{x+5}[/tex]
= [tex]\frac{6}{(x+8)}+\frac{x}{(x+5)}[/tex]
= [tex]\frac{6(x+5)+(x+8)}{(x+8)(x+5)}[/tex]
= [tex]\frac{6x+30+x+8}{(x+8)(x+5)}[/tex]
= [tex]\frac{7x+38}{(x+8)(x+5)}[/tex] units
Therefore, perimeter of the given triangle is [tex]\frac{7x+38}{(x+8)(x+5)}[/tex] units