Respuesta :

Happil

Answer:

[tex]p'(4) = -3[/tex]

[tex]q'(8) = \frac{1}{4}\\[/tex]

Step-by-step explanation:

For p'(4):

[tex]p(x) = f(x)g(x) \\ p'(x) = \frac{d}{dx}(f(x)g(x)) \\ p'(x) = f'(x)g(x) +f(x)g'(x)[/tex]

[tex]p'(4) = f'(4)g(4) + f(4)g'(4) \\ p'(4) = (-1)(3) +(7)(0) \\ p'(4) = -3[/tex]

For q'(8):

[tex]q(x) = \frac{f(x)}{g(x)} \\ q'(x)= \frac{d}{dx}(\frac{f(x)}{g(x)}) \\ q'(x) = \frac{f'(x)g(x) -f(x)g'(x)}{{g(x)}^2}[/tex]

[tex]q'(8) = \frac{f'(8)g(8) -f(8)g'(8)}{{g(8)}^2} \\ q'(8) = \frac{(2)(2) -(6)(\frac{1}{2})}{{2}^2} \\ q'(8) = \frac{4 -3}{4} \\ q'(8) = \frac{1}{4}[/tex]

thanks for helping!!