By Gauss's Law the approach of solving sum of a sequence of n terms in arithmetic progression is :
[tex]S_n=\dfrac{n}{2}(a_1+a_n)[/tex] ......1 )
Here, [tex]a_n = 302[/tex] , [tex]a_1=2[/tex] .
We know :
[tex]a_n=a_1+(n-1)d\\\\302=2+3(n-1)\\\\n = 101[/tex]
Putting, all values in equation 1) we get :
[tex]S_n=\dfrac{101}{2}\times (2+302)\\\\S_n=101\times 152\\\\S_n=15352[/tex]
Therefore, the sum of sequence using Gauss's Law is 15352.
Hence, this is the required solution.