Respuesta :

Answer:

m<EFG = [tex]69^{o}[/tex], and m<GFH = [tex]111^{o}[/tex]

Step-by-step explanation:

Linear pair angles are two supplementary angles.

Thus,

m<EFG + m<GFH = [tex]180^{o}[/tex]

2n + 21 + 4n + 15 = [tex]180^{o}[/tex]

collecting like terms, we have:

6n + 36 = [tex]180^{o}[/tex]

6n = [tex]180^{o}[/tex] - 36

6n = [tex]144^{o}[/tex]

divide both both sides by 6,

n = [tex]24^{o}[/tex]

Therefore,

m<EFG = 2n + 21

            = 2 x [tex]24^{o}[/tex] + 21

            = 48 + 21

            = [tex]69^{o}[/tex]

m<GFH = 4n + 15

             = 4 x [tex]24^{o}[/tex] + 15

            = 96 + 15

            = [tex]111^{o}[/tex]

Thus m<EFG = [tex]69^{o}[/tex], and m<GFH = [tex]111^{o}[/tex]