Answer:
m<EFG = [tex]69^{o}[/tex], and m<GFH = [tex]111^{o}[/tex]
Step-by-step explanation:
Linear pair angles are two supplementary angles.
Thus,
m<EFG + m<GFH = [tex]180^{o}[/tex]
2n + 21 + 4n + 15 = [tex]180^{o}[/tex]
collecting like terms, we have:
6n + 36 = [tex]180^{o}[/tex]
6n = [tex]180^{o}[/tex] - 36
6n = [tex]144^{o}[/tex]
divide both both sides by 6,
n = [tex]24^{o}[/tex]
Therefore,
m<EFG = 2n + 21
= 2 x [tex]24^{o}[/tex] + 21
= 48 + 21
= [tex]69^{o}[/tex]
m<GFH = 4n + 15
= 4 x [tex]24^{o}[/tex] + 15
= 96 + 15
= [tex]111^{o}[/tex]
Thus m<EFG = [tex]69^{o}[/tex], and m<GFH = [tex]111^{o}[/tex]