If m<2=98, m<3=23, and m<8=70 find the measure of each missing angle

Answer/Step-by-step explanation:
Given:
m<2 = 98,
m<3 = 23,
m<8 = 70
m<1 + m<2 = 180° (linear pair)
m<1 + 98 = 180 (substitution)
m<1 = 180 - 98 (subtracting 98 from each side of the equation)
m<1 = 82°
m<2 + m<3 + m<7 = 180° (sum of angles in a triangle)
121 + m<7 = 180 (substitution)
m<7 = 180 - 121 (subtracting 121 from each side)
m<7 = 59°
m<4 = m<7 (alternate angles are congruent)
Therefore,
m<4 = 59°
m<5 + m<4 + m<3 = 180° (angles on a straight line)
m<5 + 59 + 23 = 180 (substitution)
m<5 + 82 = 180
m<5 = 180 - 82 (subtracting 82 from each side)
m<5 = 98°
m<6 + m<7 + m<8 = 180° (angles on a straight line)
m<6 + 59 + 70 = 180 (subtitution)
m<6 + 129 = 180
m<6 = 180 - 129 (subtracting 129 from each side)
m<6 = 51°
m<9 + m<8 + m<4 = 180° (sum of triangle)
m<9 + 70 + 59 = 180 (substitution)
m<9 + 129 = 180
m<9 = 180 - 129
m<9 = 51°
m<10 + m<9 = 180° (linear pair)
m<10 + 51 = 180° (substitution)
m<10 = 180 - 51
m<10 = 129°