Respuesta :

[tex]f(x) = 6x+2[/tex]

A.

To evaluate f(8), we substitute x with 8 in our expression.

[tex]f(8) = 6*8 + 2\\f(8) = 48 +2\\f(8) = 50[/tex]

Answer: f(8) = 50

B.

To evaluate f(x+6), we do the same but substitute x with x+6 instead.

[tex]f(x+6) = 6(x+6) + 2[/tex]

Expand the parenthesis by multiplying 6 with x and 6.

[tex]f(x+6) = 6x + 6*6 + 2\\f(x+6) = 6x+36+2\\f(x+6) = 6x+38[/tex]

Answer: f(x+6) = 6x + 38

C.

Again, we're doing the same thing, just substituting x with -x.

[tex]f(-x) = 6 * (-x) + 2\\ f(-x)=-6x+2[/tex]

Answer: f(-x) = -6x+2

Answer:

_____________________________________________

[tex] \longmapsto \: f(x) = 6x + 2[/tex]

_____________________________________________

A. [tex]f(8) = 6(8) + 2 = 48 + 2 = \boxed{ 50}✓[/tex]

_____________________________________________

B. [tex]f(x + 6) = 6(x + 6) + 2 \\ = 6x + 36 + 2 \\ = \boxed{ 6x + 38}✓[/tex]

_____________________________________________

C. [tex]f( - x) = 6( - x) + 2 = \boxed{ - 6x + 2}✓[/tex]

_____________________________________________