1. Given that point M is the midpoint of AC , find the coordinates of the missing

endpoint when you are given one endpoint and the coordinates of the midpoint.

M(-2, 2) and A(2,8)

Respuesta :

Given:

Coordinates of point A are (2,8).

Point M(-2,2) is the midpoint of AC.

To find:

The coordinates of C.

Solution:

Let the coordinates of point C are (a,b).

Formula for midpoint:

[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]

Using the above formula, the midpoint of A(2,8) and C(a,b) is

[tex]M=\left(\dfrac{2+a}{2},\dfrac{8+b}{2}\right)[/tex]

[tex](-2,2)=\left(\dfrac{2+a}{2},\dfrac{8+b}{2}\right)[/tex]

On comparing both sides, we get

[tex]\dfrac{2+a}{2}=-2[/tex]

[tex]2+a=-4[/tex]

[tex]a=-4-2[/tex]

[tex]a=-6[/tex]

and,

[tex]\dfrac{8+b}{2}=2[/tex]

[tex]8+b=4[/tex]

[tex]b=4-8[/tex]

[tex]b=-4[/tex]

Therefore, the coordinates of point c are (-6,-4).