Respuesta :

Answer:

[tex]y=\frac{-7}{3}x-\frac{56}{3}[/tex]

Step-by-step explanation:

first find the slope using the slope formula

[tex]slope = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

[tex](x_{1},y_{1})=(-5,-7)[/tex]

[tex](x_{2},y_{2})=(-8,0)[/tex]

plug in

[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(0)-(-7)}{(-8)-(-5)}=\frac{0+7}{-8+5}=\frac{7}{-3}=\frac{-7}{3}[/tex]

m = -7/3

and using point slope form

[tex]y-y_{1}=m(x-x_{1})[/tex]

[tex]y-(-7)=(\frac{-7}{3})(x-(-5))[/tex]

[tex]y+7=(\frac{-7}{3})(x+5)[/tex]

[tex]y=\frac{-7}{3}x-\frac{35}{3}-7[/tex]

[tex]y=\frac{-7}{3}x-\frac{35}{3}-\frac{21}{3}[/tex]

[tex]y=\frac{-7}{3}x-\frac{56}{3}[/tex]